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I. INTRODUCTION 

Once upon a time physicists believed that nucleons and pions 

were elementary like electrons and photons, and that Yukawa's 

theory of nuclear forces was the analog of QED for strong inter- 

actions. Then the A was discovered, and then the P and other 

pion resonances, and it became apparent that neither the pion nor 

the nucleon was elementary and that both had a composite struc- 

ture. Today pions and nucleons seem to be very similar objects, 

instead of being very different like the electron and photon, and 

made of the same basic building blocks: spin l/2 quarks bound by 

colored gluons. But perhaps history will repeat itself. Maybe 25 

years from now a lecture at Erice will begin with the statement 

"3nce upon a time physicists believed that quarks and gluons were 

elementary, and that Quantum Chromodynamics (QCDl was the analog 
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of QED for strong interactions. Then . . . ..????'I 

Some suggestions already are appearing that quarks and 

leptons are not elementary but made of more fundamental objects 

called rishons or preens.' The name rishon comes from a Hebrew 

word which has several interpretations. It is also a short form 

for the name of a town between Tel Aviv and Rehovot, famous for 

its winery. A standard excursion for tourists staying in Tel Aviv 

includes a trip to Rehovot to visit the Weizmann Institute with a 

stop at Rishon to visit the winery. b friends in public 

relations at the institute used to complain about the difficulty 

of explaining anything to these tourists after they had imbibed 

freely at the winery. So I like to think of rishon physics as the 

kind of physics done under the influence of Rishon. 

The 
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rishon model is described by the cube shown in Fig.1, 

posltron, u quark, 3 antiquark and neutrino at the 

If the cube is taken to be the unit cube, with the 



neutrino corner at the origin, then the coordinates of each vertex 

have the form (x,y,zl where x, y and z can be either 0 

or 1. If we denote the value 0 by V and the value 1 by T, 

the coordinates of each vertex are labeled by the constituents of 

the particle at that vertex in the rishon model. Note that the 

electric charge axis runs along the diagonal of the cube between 

the (V,V,V) and (T,T,T) vertices, and that color SU(31 multiplets 

appear on the planes perpendicular to this diagonal. The values 

of the electric charge are (0,1/3,2/3,11 for the particles at the 

vertices of the cube. 
U e+ 

Those who prefer integral charges can simply choose a 

different charge axis to obtain the Han-Nambu cube, shown in 

Fig.2. Here the charge is the z-axis, and the particles have 

either charge 0 or cl, with the average charge of each color 

triplet being the conventional fractional charge of l/3 or 

2/3. Here there are no rishons. It is interesting that the 

difference between the integrally charged and fractionally charged 

models has a simple geometrical representation, a rotation of the 

charge axis in the cube. 

One can ask whether the T and V rishons are really 



fundamental constituents of quarks and leptons, whether they are 

only labels on a geometrical picture, or whether the true model is 

really the Han-Nambu cube. But we do not enter into such 

speculations, and examine the situation as it appears today. We 

have the new QXO model for everything, where X = A, B, C, 0, E, 

F, G, etc. So far there are only models for X = C, E, F and G, 

but no doubt the others will eventually be discovered as well. 

However, it is amusing that in the great excitement about non- 

Abelian gauge theory, the original non-Abelian gauge model for 

hadron dynamics has faded away. This was the gauge theory of 

strong interactions mediated by the octet of vector mesons p, W, 

and K* coupled to conserved vector currents. The SU(31 group 

originally introduced by Gell-Mann and Ne'eman is now called 

flavor and dismissed as an irrelevant complication in the QCD 

description of strong interactions. 

One reason for the success of the quark model was its 

prediction that the observed hadron states should be those 

constructed from a quark-antiquark pair and from three quarks. 

But the question of the possible existence of multiquark states 

keeps arising and is still open. The whole issue of multiquark 

spectroscopy has been thoroughly confused by the baryonium 

fiasco.2P3 In our considerations, we attempt to avoid these 

pitfalls. 

We begin by noting that there is no bound diproton and no 

bound dipion. This means that when two protons or two pions are 

brought together so that the quarks in one hadron are able to feel 

the short-range forces from the quarks in the other hadron, the 

resultant forces are insufficient to produce a bound state. But 

before jumping to the conclusion that there are no bound 

multiquark states of any kind, let us examine other possible 

dihadrons carefully. 

Is there a bound dikaon? Jaffe4 contends that the scalar 

61980) and the S*(9801 are states of two-quarks and two 



antiquarks, including one strange quark pair. They thus have the 

constituents of a kaon pair and have a mass just below the mass of 

two kaons. They might be considered as bound KK states. But 

because the 6n and WI channels are open at the Krthreshold, 

the 6 and S* decay into nn and nr respectively, and it is 

very difficult to establish whether or not they really have the 

structure of a bound Kc pair. 

But if these scalar mesons are indeed bound Kc states, the 

same kind of interactions that bind a K and a R can also bind 

a K with a charmed D meson. If such bound states exist below 

the DK threshold, they can have peculiar quantum numbers for 

which no other channels are open for decays by strong 

interactions. These new possibilities exist for a four-body 

system when there are four flavors. 5,6 Such exotic mesons with 

charm and strangeness might be the-first exotic states discovered. 

There might also be bound states of a baryon B and an 

anticharmed D meson. If these have masses below the !3D 

threshold, they would be "anticharmed baryons" with exotic quantum 

numbers (the wrong sign of charm for a normal charmed baryon) 

which could not decay by strong interactions. 3 

Such "threshold exotics" which do not have open channels for 

strong decays would give unambiguous signatures for a multiquark 

hadron. It is therefore of interest to look for them 

experimentally. The possible theoretical basis for their 

existence has been examined recently' as a guide for how and where 

to look. The basic physics underlying the possible existence of 

threshold exotics is the observation by Jaffe4 that although color 

electric forces saturate and do not lead to binding between color 

singlet hadrons, color magnetic forces are strong and do not 

saturate in this way. This has been discussed in detail in my 

1977 Erice lectures.6 A simple way to see this is to note that 

the N-A splitting is much larger than the binding energy of the 

deuteron. The deuteron binding energy tells us how much binding 
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energy might be gained by ordinary spin-independent forces when 

two hadrons are brought together. The N-A splitting tells us how 

much energy is available in the spin-dependent interactions. This 

energy might produce binding of two hadrons brought close together 

if their spins and color are recoupled from the configuration of 

two spin-singlet-color-singlet states to the configuration which 

minimizes the energy. But how can we estimate the binding of such 

states? 

How can we find a good model3 to estimate the possible 

binding of multiquark hadrons or threshold exotics? Nest 

physicists today believe that QCD is the correct theory for strong 

interactions but it still may be wrong. But even if QCO is right 

nobody knows how to use it to calculate the properties of the 

observed hadrons. Drastic approximations are needed to get 

results. Which approximations are good and where do they apply? 

The models used to get answers all leave out much of the 

physics. How can we be sure that the physics left out is not 

important? By investigating where different models work and where 

they break down perhaps we can learn how to use them with 

predictive power. 

Physics is an experimental science. We discover new things 

by doing good experiments. Theoretical models help to understand 

experiments and guide experimentalists to new, fruitful 

experiments. A @ model picks out leading effects, gets 

agreement with good experimental data, and predicts new phenomena 

which are found in experiment. A bad model picks out misleading - 
effects, looks for agreement with bad experimental data, and - 
predicts new phenomena which are not found experimentally. The - 
nonrelativistic quark model has been very successful. hny 

experimental results otherwise not related have been brought 

together and described by this mode18-15 and many new predictions 

and suggestions for new experiments have been made. However, the 

bag models16 have not yet proved themselves. Bag model 



calculations generally only reproduce results already known from 

the nonrelativistic quark model. Their predictions and 

suggestions for new experiments have not yet been fruitful. And 

the baryonium bag model has been particularly bad. 

Different models are needed to describe hadron structure 

because nobody knows how to solve the relativistic many-body 

problem remaining even after the glue and the ocean of pairs are 

neglected. Simplified models are invented which can be solved, 

each at the price of omitting some of the physics. Each is useful 

for different types of data; namely those where the physics 

omitted is not important. The M.I.T. bag model16 reduces the 

relativistic n-body problem to a relativistic one-body problem. 

It is useful for testing relativistic effects, but neglects two- 

body correlations of the type successfully demonstrated in the 

calculation of the neutron charge ra~dius and in the Isgur-Karl 17 

treatment of strange baryons with unequal mass quarks. The 

harmonic oscillator shell model is nonrelativistic, but furnishes 

a shell model which can be solved exactly and which includes two- 

body correlations. It is the only model in which the center-of- 

mass motion is treated exactly and spurious excitations are simply 

separated. Another potential model which has been used is the 

Quigg-Rosner logarithmic potential.18 Although this potential is 

not tractable for the three-body problem, many results are 

obtained without full calculations using the scaling properties of 

the potential; in particular results relating meson and baryon 

spectra. 

To investigate multiquark systems, we need a model that works 

for two and three-body systems and is easily extended to treat 

more particles. The bag model has too much freedom and not enough 

experimental constraints. It can be made to fit almost anything 

and has little predictive power. It is particularly unreliable 

for multiquark systems because the confinement is put in by hand 

for each n body system, and there is no simple unambiguous 
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prescription for how confinement varies with n. When the bag 

model Hamiltonian is defined for the quark-antiquark meson system, 

there is no unambigous prediction for extension to the n quark 

system and no prediction that the diproton is unbound. 

The quasinuclear colored quark model in which quarks and 

antiquarks interact with a universal two-body color exchange 

force**' has proved to be very successful in treating mesons and 

baryons and has very few free parameters. All the parameters for 

the n-body system can be determined in the meson sector with no 

further freedom. Its success in treating baryons and its natural 

explanation for the absence of bound diprotons and bound dipions 

suggests its use for treating threshold exotics. 

We justify the use of a nonrelativistic quark model as an 

expansion in a "small" parameter, v/c, which is manifestly not 

small. In the old days, when we learned quantum electrodynamics 

from Heitler's book, we calculated results to lowest order in 

perturbation theory and found good agreement with experiment, even 

though perturbation theory_ was obviously no good and higher order 

corrections were infinite. But the parameters used in the 

perturbation theory were not fundamental parameters in a theory 

from first principles. They were phenomenological parameters 

fitted to the experimental values of the charge and mass of the 

electron. Subsequent developments in renormalization showed that 

the use of these phenomenological parameters, rather than bare 

parameters, automatically included infinite sums of higher order 

terms. We therefore assume that something similar may eventually 

justify the simple nonrelativistic quark model which also uses 

phenomenological parameters. There may be something in it which 

we do not yet understand. Perhaps some hidden principle of 

relativistic regularization, asymptotic relativistic freedom, etc. 

will eventually be derived and explain why the model works. 

Meawhile we use the same approach of all unjustified perturbation 



expansions. Calculate the first non-trivial term, throw the rest 

away without looking at it and compare with experiment. 

For our treatment of multiquark systems we use a naive quark 

model**' which has had surprising success. It gives a universal 

mass formula for the mass I$ of any hadron in terms of the 

masses of the constituent quarks mi and a hyperfine interaction 

depending on their spins pi 

M, = f mi+ Jj $$Lvij> (1) 

where <Vij’ is the value of the matrix element of the hyperfine 

interaction. This formula immediately gives the successful 

relation between meson and baryon masses 8,14 

MA-MN = I77 WeV = ms-mu 
-. 

(2) 
= (3/4)(%*-Mn) + (1/4)(%-Mn) = 180 i+eV 

The additional assumption that the magnetic moment vi of a quark 

with electric charge ei is given by 

ui = eiiMp/mi) nuclear magnetons (3) 

together with the standard SU(6) baryon wave functions gives two 

relations3.4 for the magnetic moment of the 12. 

Uh = -0.61 n.m. = (-1/3)[11/~~) + (M,-M~)~M~]-I = -0.61 n.m. (4a) 

u,, = -0.61 n.m. = -(~~/31:$) 
5 

= -(up/'3)( My*+ 2+ A+ -M )lIM -$I = -0.61 n.m. 
(4bl 

This remarkable agreement is very surprising in view of known 
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. 
neglected effects considerably larger than the difference between 

the theoretical and experimental values. It can be understood 

only if these neglected effects conspire to give contributions 

absorbed in the definition of the quark mass parameters mi which 

are not determined by first principles but by fitting data. These 

quark mass parameters appear in both terms in Eq.(li and in 

Eq.(3); i.e. as direct contributions to hadron masses, as 

coefficients in the strong hyperfine interaction responsible for 

spin splittings, and in the magnetic moments. The success of 

Eqs.(Z) and (4) imply that the corrections to mi in all three 

places in Eqs.(2) and (3) for baryons and in the first term of 

Eq.(l) for mesons are nearly the same. Note that Eqs.(Z) and (4a) 

do not involve the second term in Eq.(l) nor Eq.(3) for mesons. 

The zero point kinetic and potential energies and 

relativistic effects neglected in Eqs.(l) and (3) have been 

investigated and shown to fit into the general pattern discussed 

above. Although they are large, their main contribution can be 

absorbed by changing the values of the mass parameter mi in 

nearly the same way for mesons and baryons in the first term of 

Eq.(l) and in the magnetic moment (3). These effects produce a 

small difference in mi between mesons and baryons which does not 

affect the relation (2) because ms and mu are shifted by about 

the same amount. It does not affect Eqs.(4a) and (4b) which 

involve only baryons. But this difference is observable in other 

experimental quantities calculated explicitly to give new 

relations which agree with experiment.12 

The zero point energy in meson and baryon systems was 

calculated l2 in the quasinuclear model of Refs.(8,9) as the 

ground state expectation value of the Hamiltonian for a system 

of n particles interacting with a two-body color exchange 

logarithmic potential 
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2 

E,, = CH> = 1 mi + 1 $ + 1 Ukijlog(rij/r,,l (51 
i i i i>j 

where U = 733 FIIV is the strength of the Quigg-Rosner logarithmic 

potential18*lg and kfj is a color factor. The rest mass 

contribution to the energy is included, but the non-relativistic 

expression for the kinetic energy is used. The spin-dependent 

contribution is averaged out to give the zero point energy for the 

appropriate spin averages of the hadron masses used in Eq.(2). 

Evaluating the color factors and using the virial theorem gives a 

result valid for any n-body color-singlet bound state of quarks 

and antiquarks8*' with complete symmetry between the n 

constituents. 

EO(nI = n[m + t + g clog(r/rU)>,,] e n meff (6) 

where meff is defined as the effective quark mass. 

To the extent that the variation in <log r> from one hadron 

to another can be neglected, the zero point energy and the hadron 

masses are proportional to n, giving the familiar "quark 

counting" 3/Z ratio for baryon to meson masses and the same value 

Of meff for both systems. The correction to this value of 3/2 

and the difference in meff are determined from the difference in 

clog(r)> between mesons and baryons, 

[m eff (bar) - meff(mes)jtheo = f log (Z//J) = 53 f4V (7a) 

where the value Z/fl comes from the assumption that r scales 

like (p2)-l/' between mesons and baryons and using the scaling 

factor for pz from the virial theorem in Refs.(8,9). This can 

be compared with experimental values of spin averaged meson and 

baryon masses. 
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[m effibar) - meff(mes)] 
= M(N) + M(A) 

exp 6 
_ EM + M(n) 

8 
(7b) 

= 54.5 i 1.5 Mev 

The change in effective quark mass (7) between mesons and 

baryons is independent of quark flavor and cancels in any flavor- 

dependence relation analogous to (2). 

In view of the success of this model for the n = 2 and 

n q 3 systems, we apply it also to the case of n = 4. 

Equation 16) shows that when the spin effects are averaged out the 

energy of the ground state of the n-body system is proportional 

to n. This means that the four-body system has exactly the same 

energy as two two-body systems and will be unbound and unstable 

against breakup into two two-body mesons. However, the spin 

dependent part of the two-body interaction given by the second 

term of Eq.11) can produce binding. This describes formally the 

qualitative argument given above and originally due to Jaffe. We 

now examine the effects of this hyperfine interaction in the four- .- 
body system in a quantitative way following Ref.7. 

The four quark scalar states can be considered as bound 

states of two ordinary pseudoscalar mesons, with binding provided 

by the hyperfine interaction. The basic physics can be seen as 

follows: Consider a state of two pseudoscalar mesons placed very 

close together to form a four-particle qqqfi cluster. In the 

original color-spin coupling each meson is a quark-antiquark pair 

in a spin-singlet-color-singlet state and there is no force 

between the quarks in one meson and the quarks in the other. But 

suppose the colors and spins of the four particles are recoupled 

to introduce'color octet and spin triplet components into each 

pair while keeping the overall four-particle state a color singlet 

and spin singlet. The color-electric interaction is not changed 

by this recoupling, as is seen from Eq.(6), since it is the same 

for any spatially symmetric color singlet state. But the suin- 
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dependent hyperfine interaction can change. Some energy is lost 

in the hyperfine energy of each original pair since the state 

which is the singlet in both color and spin has the lowest 

energy. But there are four new pairs involving a quark or 

antiquark in one of the old pairs and a quark or antiquark in the 

other. Before the recoupling there was no interaction energy in 

these four pairs. Binding can occur if recoupling gains more 

binding energy in the forces between the four new pairs than it 

loses in the forces between the two old pairs. 

To determine whether a four particle bound state exists the 

possible gain in potential energy due to color and spin recoupling 

must be balanced against the increase in kinetic energy required 

to keep the four-body system together rather than allowing it to 

separate into two mesons. The gain in potential energy can easily 

be calculated, using Jaffe's color:spin force and experimental 

values for observed hyperfine splittings, for a four-particle wave 

function which has a spatial dependence between each pair which is 

the same as any other pair (e.g., like the four nucleons in an 

alpha particle) and is the same as in ordinary quark-antiquark 

mesons where the values of the hyperfine interaction matrix 

elements are known from experimental hyperfine splittings. In the 

cases of interest, an appreciable gain in potential energy is 

obtained by such a recoupling of spins, as is shown below. 

However, it is not clear if this is sufficient to overcome the 

effect of the kinetic energy. The question of how to modify the 

wave function from this simple a-particle structure in a way which 

minimizes the energy has no simple model-independent answer, since 

it depends upon how the color charge and color hyperfine 

interactions change when the four-particle wave function is scaled 

up in size or takes on a two-center molecular type configuration 

rather than that of an alpha particle. Such asymmetric 

wavefunctions can also lead to effects from color electricity as 

well as from the confinement potential if this latter is color 
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The existence of the 6 and S* just below the Kc 

threshold indicates that such binding occurs for the four-quark 

system. Jaffe has pointed out that the degeneracy of the 

isovector 6 and the isoscalar S* which couples much more 

strongly to KK than to HV is simply explained in the four quark 

model and not in the standard q4 model and that the masses are 

in the right ball park. We note that the description of these 

states as just barely bound states of the KR system provides a 

natural explanation for the occurence of these states right at the 

KR threshold. There is no simple explanation for this striking 

experimental fact if the 6 and S* are ordinary qq mesons. 

We therefore suggest that similar bound states of DC and 

DK should exist near and possibly below the DK threshold. The 

isoscalar states of these two configurations, 'p6 denoted by rs 

and F, would then be stable against strong decay. 

The increase in potential energy from color-spin recoupling 

can be calculated for the alpha particle configuration using .- 
Jaffe's expressions for the hyperfine interaction.4 We consider 

the four-quark SU(6) scalar state with the color-spin classi- 

fication (21,21*) in the SU(6) x Stl(6) classification, where the 

two SUC6) groups are the color-spin groups for the quarks and 

antiquarks respectively. (For illustrative purposes the effect of 

[l] - [405] SU(6) color-spin mixing is neglected and the result of 

the exact calculation is quoted below**.) The expectation values 

of the hyperfine interaction in this wave function for a quark 

antiquark pair and a quark-quark pair respectively are found to be 

Mq$21,21*) = -(3/7)(y/ - Mp) (8a) 

~~~(21,21*) = Mq$21,21*) = -(3/28) It+ - MT,) (Eb) 
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where M, - MP is the hyperfine splitting for the conven- 

tional qq mesons, given by the experimental value of the mass 

difference between the vector and pseudoscalar mesons. The 

hyperfine interaction in a conventional pseudoscalar meson is just 

Mq$P) = -(3/4)(i'$ - Mp) (gal 

This is greater than the value of the hyperfine interaction 

(8a) for a quark-antiquark pair in the (21,21*) state, as 

expected. The change in energy of a qq pair in recoupling its 

spin from the pseudoscalar color-singlet-spin-singlet state to the 

(21,21*) state is given by the difference between (8a) and (9a) 

Mq$21,21*) - Mqq(P) = (9/28)(yI- Mp) 
-. 

(9b) 

The change in binding energy of the alpha particle 

configuration in recoupling the colors and spins from the two 

pseudoscalar configuration to the (21,21*) configuration is seen 

to contain three components. Equation (9b) gives the loss in 

binding energy for each of the two q4 pairs that were originally 

coupled to pseudoscalar mesons. Eq.(8a) gives the gain in binding 

energy for each of the two q4 pairs which were intially not in 

the same meson and had no initial hyperfine interaction. Eq.(8b) 

gives the gain in the binding energy for qq and qq pairs which 

also had no initial hyperfine interaction. The net gain in 

binding for the alpha particle configuration over the 2P 

configuration is then given by 

M(a) - ZM(P) = -2(; + & - ;,#$ - Mp' = - $9 - Mp) (10) 

The exact calculation gives -O.S3(I$ - MP), about 25% larger. 

Since vector-pseudoscalar splittings are typically several 

hundreds of &V, the gain in potential energy from color-spin 
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recoupling in the alpha particle configuration is also several 

hundreds of Mev. This is sufficient to be taken seriously as a 

source for binding. However, the zero point kinetic energies per 

degree of freedom are of the same order of magnitude. As men- 

tioned above, whether the binding is sufficient is a dynamical 

question requiring detailed studyzl; for now, we assume from the 

K'K system that binding does indeed occur. (Note, for example, 

that the usual &function potential used for the hyperfine inter- 

action is valid only in perturbation theory, and that it is too 

singular to give a sensible result in the Schrodinger equation.) 

The expression (10) assumes SlJ(4) flavor symmetry in which 

the hyperfine interaction is flavor-independent. However, flavor 

dependence is easily included if we keep the (21,21*) wave 

function. This gives an upper bound on the hyperfine energy, 

since it will be possible to lower the energy by slight changes in 

color-spin recoupling from the symmetric (21,21*) configuration if 

the hyperfine couplings of the quarks are different. For this 

purpose the expressions (8) and (9b) are convenient since each can 

have a different flavor dependence. 

Consider the DR and DK systems which might bind to pro- 

duce the Ts and Fx states respectively. These contain six 

pairs with flavors (cs),(cu), (cd), (su), (sdl and (ud). Each 

pair gives a contribution to the binding which has the form 

(8a),(8b) or (9b) depending upon whether it is a quark-antiquark 

or quark-quark pair not in the original mesons or whether it is a 

pair which was in an original meson state. For each pair the 

relevant value of i$ - Mp is the hyperfine splitting corre- 

sponding to the flavors of the particular pair. We thus obtain 

M{a;FxicuJD)l - M(D) - M(K) = -(3/7)(M, - M, + F* - 9) 

+ t3/14)($ - % + MD* - MD) 
(lla) 

= 205 kV . 
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M~a;?s(csSal) - MiDI - M(K) q -13/28l(Mo - M, t f$ - 9 

+ Q - $ + se - MO) (llbl 

= 140 Mav 

where Mja;...} denotes the potential energy in the alpha particle 

configuration for the quantum numbers indicated (recall we have 

isovector-isoscalar degeneracy). 

For the case of the Kc system which can bind to produce 

the 6 and S* states, expressions entirely in terms of 

experimental hyperfine splittings like (11) cannot be obtained, 

since the hyperfine splitting for an ($3) pair is obscured by 

mixing and not directly available from experiment. If we assume 

that hyperfine splittings are inversely proportional to quark 

masses, we obtain the result 

Ma,61 - ZM(K) = -(3/7)(MK, - MK){l + (>t 2 - 211 
u S 

(121 
= -200 Yev 

where ms and mu are the masses of the strange and up quarks 

and we have set mu/ms = 2/3 to obtain the numerical result. 

Note that this result is very insensitive to the value of 

mu/m,. 

These energies are all in the right ball park to suggest that 

spatial configurations exist in which these potential energies can 

barely win over the kinetic energies to produce a bound state. 

One would expect kinetic energy effects to be smaller for the 

charmed system because of the increased mass; thus if the S* 

and 6 are bound Kg states, the F, should also be bound and 

the rs borderline. The same argument applied to the OTT and 

KTT systems could explain the absence of bound E and I: states. 
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This calculation may be made using Jaffe's result for [1] - 

[405] mixing in references (4);f one takes into account that 

in equation (3.19) of the second article the sign of the 

IO+% [405]> state should be reversed. 


